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The relaxation properties of a small classical system weakly coupled to a large 
classical system which acts as a heat bath are described using a generalized 
Fokke~Planck equation. The Fokker-Planck equation is derived in general 
using a modification of the elimination of fast variables techniques previously 
described. The specific example in which the small system is a harmonic 
oscillator linearly coupled to the .heat bath is treated in detail and it is 
demonstrated that there is a dynamic frequency shift as well as a statistical shift 
of the oscillator frequency. 
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1. I N T R O D U C T I O N  

The theore t ica l  descr ip t ion  of the re laxa t ion  proper t ies  of systems in the 
weak coupl ing  l imit  has a long history.  Both  classical  and  q u a n t u m  systems 
have been s tudied using a var ie ty  of  techniques,  such as p ro jec t ion  
opera tors ,  kinetic  theory,  s tochast ic  theory,  and  F e y n m a n  pa th  integrals.  
The  results of these studies have yielded mas te r  or  general ized F o k k e r -  
P lanck  equat ions  for the system d is t r ibu t ion  funct ion or  general ized 
Langevin  equa t ions  for the dynamica l  var iables  of the system. In teres t  in 
this subject  has been revived due to the spate  of work  on q u a n t u m  
tunnel ing p h e n o m e n a  in condensed  systems s t imula ted  by the seminal  
studies of Legget t  and  co-workers  (see ref. 1 for a review). The number  of 
papers  wri t ten  on this subject  in the pas t  few years is ex t remely  large and a 
var ie ty  of different results have been obta ined .  

It is a great personal and professional pleasure to dedicate this article to Nico van Kampen, 
whose influence permeates this work. 
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Massachusetts 02139. 
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It is difficult to overestimate the importance of the study of weakly 
coupled systems, since all modern treatments of time-dependent 
phenomena depend on either (1) the weak coupling of some variables of 
the system to other variables within the system, or (2) the weak coupling 
between the system and an external bath. Examples of category 1 are the 
hydrodynamic variables which are weakly coupled to the molecular 
variables of the system. Examples which may fall into either category 1 or 2 
depending on one's point of view are spin variables which are weakly 
coupled to lattice variables. An example of category 2 is Brownian motion, 
where the weak coupling between the Brownian particle and the bath is 
due to the ratio of the masses of a bath particle to that of the Brownian 
particle. In all of these examples, the time dependence of the pertinent 
system variables is on a slow time scale compared to the time dependence 
of the molecular variables in the system or in the bath. There have been 
many successful treatments of these phenomena. 

A much more difficult problem to treat is the case in which a system is 
weakly coupled to a bath but in which the time scales of the system 
variables are comparable to the time scales of the bath variables. We 
propose to study this problem using techniques previously developed. (2) 

The modern treatment of weakly coupled systems is based on the 
seminal work by van Hove, (3) Zwanzig, (4) Montroll, (s) and Prigogine and 
his collaborators. (6) This work is based on splitting the system Hamiltonian 
H into two parts Ho and 2V and discussing the decay of the system to 
equilibrium with respect to the Hamiltonian Ho due to the perturbation 
2 V, using the weak coupling approximation. The results of these studies are 
master equations for the diagonal elements of the density matrix of the 
system. All of these treatments use the assumption that at t = 0 there are 
random phases in the system. Unfortunately, there is no reason to believe 
that this initial condition is appropriate for the treatment of these systems. 
Indeed, it is the form of the distribution function or density matrix for 
times longer than a molecular time 27 m ~ 10 12 sec, but shorter than 2-2~7m, 
that is important for deriving the relaxation equations of interest. 

In the more recent developments, interest has been focused on the 
properties of a small system molecular or mesoscopic--in weak inter- 
action with a large, macroscopic system or heat bath. (7 20) The properties 
of interest are the mode of decay of the small system to equilibrium and the 
form of its equilibrium distribution. In almost all cases, special forms for 
the small system, the large system, and the weak coupling between the 
small and large systems have been chosen. The small system has been 
considered to be a two-level system or a harmonic oscillator; the large 
system has been considered to be a collection of uncoupled harmonic 
oscillators; and the coupling has been considered to be a product of linear 
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functions of the bath and small-system coordinates. There has been no 
general scheme developed which ensures that the distribution function of 
the small system relaxes to the appropriate form when corrections higher 
order in ). are considered. 

In this paper, we study the properties of a small system in weak 
interaction with a large system, using extensions of the techniques 
previously developed for treating classical and quantum Brownian 
motion. (2) We insist that the treatment yield relaxation equations such 
that the equilibrium distribution function for the system be of the proper 
form for the system in weak interaction with the bath to the appropriate 
order in the weak coupling parameter )~. Further, we insist that when 
the equilibrium solution is substituted into the relaxation equation the 
streaming and dissipative terms become zero separately. This is the only 
way of ensuring that the distinction between streaming and dissipative 
terms be properly maintained. 

In Section 2, we describe the system under consideration, the projec- 
tion operator used in this investigation, and its essential properties, and 
derive exact equations for the projected distribution function. In Section 3, 
we obtain a generalized Fokker Planck equation. In Section 4, we apply 
these considerations to the special case in which the system is a harmonic 
oscillator weakly coupled to the bath by a potential linear in the system 
coordinates. All of these results are for classical systems but can be 
extended to quantum systems as well. Finally, in Section 5 we present a 
summary and conclusions. 

2. THE PROJECTION O P E R A T O R  A N D  EXACT D Y N A M I C  
E Q U A T I O N S  

In this section we introduce a projection operator that allows us to 
separate the Liouville equation unambiguously into Euler (streaming) and 
dissipative parts. 

We consider a classical overall system consisting of a system with a 
small number of degrees of freedom interacting with its environment. The 
latter, denoted the bath, has a large number of degrees of freedom. The 
Hamiltonian of the overall system, i.e., system plus bath, is 

H =  Hs(R, P) + Hb(r , p) + 2q~(R, r) (2.1) 

Here, R and P denote the small number of system coordinates and 
momenta, r and p denote the very large number of bath coordinates and 
momenta, 

Hs = p2/2M + V(R) (2.2) 
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is the Hamiltonian of the system, 

H b = pZ/2m + U(r) (2.3) 

is the Hamiltonian of the N particles of the bath interacting via the poten- 
tial U(r), qS(R, r) is the interaction potential between the system and the 
bath, and 2 is the strength of the interaction. The phase point of the bath is 
denoted by X= (r, p). 

In the absence of interaction between the system and bath (2 = 0), the 
bath will relax toward equilibrium due to its large number of degrees of 
freedom, with characteristic time rb; the system, however, will not relax to 
equilibrium, because of its small number of degrees of freedom. The charac- 
teristic time of the system motion is %. When the interaction is turned on 
(2 # 0) the overall system will relax to equilibrium. If the interaction is suf- 
ficiently weak, the relaxation time rR will be much longer than % or rs. The 
relaxation to equilibrium for the overall system (2 r 0) and for the isolated 
bath (2=0) has to be understood in the sense that reduced quantities, 
depending on a small number of degrees of freedom, will relax toward their 
equilibrium values. 

Before proceeding with the analysis of the time dependence of the 
distribution functions of the system, we present the equilibrium forms 
for these functions. The equilibrium distribution function for the overall 
system is 

pe(R, P, X ) : e - ~ H / f  e -/~H dR dP dX (2,4) 

The reduced equilibrium function for the system is 

( .  

We(R, P) - j pe(R, P, X) dX= 

We define the quantity ~o(R, 2) by 

e '~n'Se fi(Hb+2~l')dX 

e an, dR dP ~ e-~(nb+;'*)dX 

e /J;~~ ~'r d X / I e - ~ m  dX 

= f p~~ -~*  d X -  (e ~;'~)o 

(2.5) 

(2.6) 

where )v~o(R, 2) is the potential of mean force due to the interaction of the 
system with the bath and 

p~O)=e ~Hb//~ e ~n~ dX (2.7) 
/ J  
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is the equilibrium distribution function for the 
(2.4) and (2.5) can be rewritten 

pe(R, P, X)  p ~ ~  '/~ e is(H~+;.~o) = / j d R  d e  

and 
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isolated bath. Equations 

(2.8) 

and 

f f i e d X  1 (2.11) 

p~=fi~W e (2.12) 

exactly. 
The time evolution of the probability distribution function of the 

overall system is given by the Liouville equation 

8p(R, P, X, t ) /& = Lp(R,  P, X, t) (2.13) 

where L is the total Liouvillian 

L = L~ + Lb + f iL l  =-- Lo + fiLl (2.14) 

The isolated system Liouvillian is 

L s = - P / M  .VR +VR V(R).Vp (2.15a) 

the isolated bath Liouvillian is 

Lb = - - W m .  Vr + V r U( r ) -V p  (2.15b) 

and the interaction Liouvillian is 

LI=VRq 5 . v e + v r ~ . v p  (2.15C) 

where 

I' 

We(R, P) = e-/~(H, + ~.~,)/j 
P 

/ e /~o~,+~.~o) dR dP (2.9) 

Finally, the conditional equilibrium function for the bath for fixed R and P 
is given by 

fie(R, X)  =- p , , /W e = p~~ Is;~ e~;~ (2.10) 
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We wish to obtain an equation for the time dependence of the reduced 
probability density of the system 

W(R, P, t) = f p(R, P, X, t) dX (2.16) 

using projection operator techniques. The projection operator with the 
most felicitous properties is defined by 

P B = ~  f B d X  (2.17) 

where B is an arbitrary dynamical variable and fie is given in Eq. (2.10). 
We introduce the quantities 

y ( t ) -  Pp(t)= ~eW(R, P, t) (2.18) 
and 

z(t) - (1 - P) p(t) - Qp(t) (2.19) 

The time derivatives of these quantities obey the equations 

~(t) 

+ 2Vp-fVRqSz(t)dX] (2.20a) 

and 

2(t) = QLQz(t) + QLy(t) (2.20b) 

which follow from Eq. (2.13) and the facts that 

PLbB = O, PL,B = ~ L  s f B dX, 

[ y(t) dx= w(t), 

PLIB = ~ f VR qS. VpB dX 

(2.21) 

j z(t) dX= 0 

It follows from the definition of fie, Eq. (2.10), that 

vR f  eaX=O= f dX 

and thus 

VRco = [ ~eVRq 5 dX 
J 

(2.22) 
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The term QLy(t) in Eq. (2.20b) becomes 

QLy(t) = W(t) Q L ~  + Q~LW( t )  

= W(t) L : ,  + )o/~eVR(~ -- co)-Vp W(t) 

= )45~VR(q5 -- 6o). (Vp + tiP/M) W(t) (2.23) 

Thus, Eqs. (2.20) become 

= [~, W(t) + 2Vp. j V R @z(t) dX (2.24a) 

2(t) = QLQz(t) + 2~  VR(45 - co). (Vp + tiP~M) W(t) (2.24b) 

where 

L , - L ,  + 2VRco.Vp= - P / M . V R + V R ( V + 2 c o ) . V p  (2.25) 

is an effective Liouvillian corresponding to the Hamiltonian 

fit, = P2/2M+ V(R) + 2co(R, 2) (2.26) 

Equations (2.24) are exact. Note that co(R, 2) can be expanded as a power 
series in 2 starting with a 2 o term. Since PPe = Pe, ze = 0, and since L s W e = 
(Vp+tiP/M)We=O, the terms in Eqs. (2.24) involving W and z are 
separately equal to zero at equilibrium. 

Substitution of the formal solution to Eq. (2.24b) into (2.24a) yields 

W(R, P, t) 

= Ls W(t) + fiV?. f VRcI) eO-LQ'z(O) dX 

:'t :~ 

+ )'2Ve ']o dz J dXVRq5 e ~176 •,VR(q5 -- co). (Vp + tiP~M) W(t - r) 

(2.27) 

The first term on the rhs of Eq. (2.27) is a streaming or Euler term;,the 
second term is an initial value term; and the third term involves a time- 
dependent correlation function. Again, Eq. (2.27) is an exact equation and 
each term on the rhs is zero at equilibrium. 

Since Eq. (2.27) is exact, it is equivalent to Newton's  laws for the 
overall system. It is in a suggestive form for reduction to a generalized 
Fokker -P lanck  equation when 2 is small. This reduction is facilitated by 
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the special properties of the projection operator, Eq. (2.17). These special 
properties are: 

1. Since PPe=Pe,  z(t) ~0  as t--* or. 

2. The streaming and dissipative terms in Eq. (2.27) are separately 
equal to zero in equilibrium. 

3. The initial value term in Eq. (2.27) becomes negligible for t >  rb 
because of the properties of the propagator e~ for essentially 
all initial conditions. 

4. The last term on the rhs can be significantly simplified because of 
the properties of this propagator. 

Other choices of projection operators have been previously used, but 
they have limited applicability since they do not have properties 1 and 2 
and thus cannot be used for systematic expansions of Eqs. (2.24) or (2.27) 
in powers of 2. 

3. A G E N E R A L I Z E D  F O K K E R - P L A N C K  E Q U A T I O N  

In this section, we obtain a generalized Fokker-Planck Equation from 
Eq. (2.27) which is valid in the weak coupling limit in which 2 is small, t 
large, and 2zt of arbitrary size. In carrying out this procedure, we must be 
careful not to neglect any terms which contribute to the 22t dependence 
of W. Extensions to higher orders in 2 are straightforward even though 
they are complicated algebraically. 

We first turn our attention to the initial value term in Eq. (2.27). The 
propagator eQCQtQ can be written 

eQLQtQ=[eL~ foeL~ ~)QLIQeL~ (3.1) 

where we have used the fact that QLoQ = Lo Q. The propagator e Lo~ has the 
property 

f dX CeLOtQBz(O) = 0 (3.2) 

for t > rb, where C and B are dynamical variables involving bath coor- 
dinates and/or momenta. This property follows from the assumption that 
the isolated bath relaxes to equilibrium on the time scale rb. Therefore, the 
initial value term in Eq. (2.17) is of order 2 for t < %, 22 for 2rb > t > rb, .~3 
for 3z b > t > 2 % ,  etc. For a similar argument, see Mazur and 
Oppenheim. (21/ For  2,~ 1, 2~" b is negligible and the initial value term' in  
Eq. (2.27) can be neglected. 
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The 2 dependence of the last term on the rhs of Eq. (2.27) arises from 
the explicit factor of 22, the propagator e QLQ~, the distribution function Pe, 
the potential of mean foce co, and the distribution function W(t-r) .  The 
2-dependent terms in Pe and VRco will contribute to 0(230 and thus we 
can substitute 

ffeVR((b - c o ) -  p(b~ ~ (3.3) 

where 

V R ~ - - V R ~ - -  f p~b0) VR q5 dY (3.4) 

The 2-dependent terms arising from an expansion of the propagator e QLQ~ 
similar to Eq. (3.1) must be treated as perturbations if an appropriate 
transport equation is to be obtained (see, e.g., van Kampen and 
Oppenheim(21). Since r~ and rh may be comparable, we cannot neglect the 
time displacement of W(t - ~) in this term. Because of the properties of the 
propagator eL~Q, the correlation function in this term is zero for times 
greater than r b and W(t-~)  can be written 

W(t -  ~) ~- [ e x p ( - L , r ) ]  W(t) 

up to 0(22), which follows from Eq. (2.27). 
Finally, we can now approximate Eq. (2.27) by 

(3.5) 

�9 (t)= L, w(,) + 22vp. dr I dxv, |  

• {exp [(r,~ + Lb)z] } p~~ (Vp + flP/M)[exp( - L s z ) ]  W(t) 

(3.6) 

for t >rb.  Equation (3.6) is correct through 0(22t). Indeed, it contains 
some parts of higher order terms due to the presence of the Ls Liouvillians 
which, in principle, contain terms to all orders in 2. We have used the 
propagators exp(/Zsr) in Eq. (3.6) in order to ensure that We is an exact 
solution to Eq. (3.6) to all orders in 2. 

Again, the streaming and dissipative parts of Eq. (3.6) are separately 
equal to zero when W(t)= We. Because of the dissipative nature of the 
second term on the rhs of Eq. (3.6), W(t) --* We as t -~ oc. The relaxation of 
W(t) to We described by Eq. (3.6) is correct to order 22t, but there are 
higher order terms (23t) in the time dependence which have been omitted. 
These properties of Eq. (3.6) are due to the choice of the projection 
operator in Eq. (2.17). 



316 Romero-Rochin and Oppenheim 

Equation (3.6) can be written 

2 fo ~ I/V(t)=LsW(t)+2 V?. dr (VR@VR@(--Z))0 

• [er.SWee-r~s~ + t i p ( - , ) / M ]  W(t) (3.7) 

where the notation ( ' ) o  implies an average over p(a ~ VR~b(--r)-- 
FVR#(r, R ) ] ( - z ) ,  and 

r ( - ~ )  = e+Cb~r, R ( - ~ ) =  e+L,~R 

Before applying Eq. (3.7) to a particular situation, we must retain Ls to an 
appropriate order in 2. 

The operator acting on W(t) in Eq. (3.7) can be approximated in the 
following way: 

e -z,~ W(R, P, t) = W(R(r), P(r), t) + 0(2 2) 

Vee L~W(R, P, t )=  VpP(Q .Ve(~)W+VpR(r ) W+ 0(2 2) 
(3.8) 

e+~'Wpe-g~'~W(R, P, t )=  [eL~V~,P(r)] .Vp W(R, P, t) 

+ [eL'~VpR(r)] .VR W(R, P, t) + 0(22) 

The error introduced into Eq. (3.7) by this approximation is of order 24. 
If the characteristic time of the system r, is much .longer than rb, 

Eq. (3.7) can be approximated by 

W(t )=L,W( t )+  22 fo dr(VRq~eL~'VRq~)o:Vp(Ve+flP/M) W(t) (3.9) 

which is the usual Fokker-Planck equation. 
In the next section, we solve Eq. (3.7) for a simple example which 

clarifies important aspects of the time dependences inherent in this 
equation. 

4. H A R M O N I C  O S C I L L A T O R  W I T H  L INEAR C O U P L I N G  

In this section we analyze Eq. (3.7), through second order in 2, for the 
simple case of a one-dimensional overall system in which the system is a 
harmonic oscillator linearly coupled to the bath. Here, 

H s = p2/2M + �89 2 (4.1) 

and 
r r) = Re(r) (4.2) 
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Without loss of generality, we assume that 

( r  (4.3) 

To second order in 2, Eq. (3.7) becomes 

2 0 W ( t ) = ( - P  ~--~+ Mf21R-~) W(t) 

+ 2 2 ~ f o d Z  (O(r)r (4.4) 

where 

and 

f-.s = -P/M O/OR + MQ2R O/OP 

Q~ = Q2 _ fi) 2/M ( ( f )o 
Substitution of the results 

R(r) - e /~'~R = R cos f21 z + P/Mf21 sin O 1 r 

P(~)- e r~'~P=Pcosf21z-Mg21Rsinf21z 

into Eq. (3.8) and then into Eq. (3.7) yields 

w(t ) -  P aw(t) ow(t) 
M OR MOOR O----i-- 

where 

+ 22F1 ~-p (--~-+ ~--p)W(t) 

+ 22/"2 0-@ (flMQ2R + O-~) W(t) 

/"1 = & (r COS ~l"C 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

F 2 = | d~ sin (21r (4.10) 
J0  Mf2~ 

As was mentioned in Section 3, if ~(~11>~"Cb, /"2--'*0, and we recover the 
standard Fokker-Planck equation. 

Notice that for this particular example, the last term of Eq. (4.8) 
involves a correction to the frequency in addition to the shift coming from 
the Euler term. This correction is of a dynamic nature; namely, the 

822/53/1-2-21 
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equilibrium distribution function will be independent of it. This point will 
be clarified later once the exact solution of Eq. (4.8) is obtained. 

In order to solve Eq. (4.8), we will follow very closely the method 
outlined by Chandrasekhar. (22) For convenience, we set M =  1 in the 
following. 

We first write down the associated subsidiary system of Eq. (4.8) (i.e., 
the equations for the first moments of the distribution): 

/6 = ~2 R _ )~ 2fl/- 1 p (4.11 ) 

fi = P (4.12) 
where 

~2 = ,(212(1 + 22flF2) (4.13) 

Now, we introduce as variables two first integrals of Eqs. (4.11) and (4.12), 
that is, 

= ( R I ~ I - P ) e  ~2t (4.14a) 

= (R#2 - P)e  -ult  (4.14b) 

where 

g l =  _ ~ +  i ~ 2 _  (4.15a) 

/~2 = 2 (4.15b) 

are the roots of the secular equation of the system (4.11) and (4.12), 

#2 + 22flF1 # + ~2 = 0 (4.16) 

where we have assumed that f2 is O(1), giving rise to complex roots. 
In these variables, and by making the further transformation 

Eq. (4.8) becomes 

W(~, q; t) = e)'2r~tZ(~, ~l; t) 

C~ 2 
8Z(t)~t - ~ '2 ( r l  --  /-'2'Ul )e-2'u2t 6q~2 Z( t )  

(32 
+ 22(F~ - F21~z)e 2 ~  8~2 Z(t) 

(32 
+ 2212F1 - F2(/zl + ~2)] e -  ("* +"2)~ z(t) 

(4.17) 

(4.18) 
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The solution of Eq. (4.18) for the initial condition 

z ( t  = o )  = a ( r  - ~ o )  a ( ~  - r/o) 

that is, corresponding to W(P, R; t = O) = 6 ( P -  Po) 6 ( R -  Ro), 
{o = Ro#l - Po and t/o = Ro#2 - Po, is 

(4.19) 

where 

, {, 
Z(~, q, t, ~o, r/o) - 2HA1~2 exp - ~ [v(t)(~ - ~o) 2 + u(t)(r/-  r/o) 2 

- w(t)(~. - r  r/o)] } (4.20) 

where 

/ ) ( l )  ~--- . ~ 2 ( / "  1 - -  / ~ 2 # 2 )  

1 - - e  -2#1t  
(4.21a) 

2#1 

1 - -  e -2#2t  
(4.21b) 

2#2 
u ( t )  = , ~ 2 ( v l  - v 2 # 1 )  

w ( 0  = , ? [ 2 &  - r 2 ( # ,  + #2)]  
1 - -  e - (/~! q -#2 )  t 

#1 + #2 

A =4u( t )  v ( t ) -w2( t )  

(4.21c) 

(4.21d) 

Hence, the normalized solution W(t) in the variables P and R, whose 
initial condition is W(0) = 6 ( P -  Po) 6(R - Ro), is 

W(P, R, t; Po, Ro) 

# 1  - t -#2  22flFlt 
2HA v2 e 

x z((R#,  - P)e ,2,, (R#2 - P)e ~', t; (Ro#, - Po), (Ro#2 - Po)) 

(4.22) 

Although it is evident that W(t) is a Gaussian function in P and R, its time 
dependence is somewhat complicated and not very illuminating. 
Nevertheless, we can look at the time evolution of its moments and at 
some limiting cases. 

First of all we note that when t--* oe, we obtain the equilibrium 
distribution function We, valid up to second order in )., 

exp[ -/~(p2/2 + �89 2) 
We(P, R) = S dP dR exp[ - f l (p2/2 + �89 (4.23) 

that is, L, W e - ~  0. 
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Note that at equilibrium the frequency of the oscillator is given by 
f21 only [-see Eq. (4.6)]; that is, only the streaming shift contributes, as 
predicted. 

In order to analyze the time dependence, we calculate two of the 

second moments of the distribution, P2(t) and R2(t): 

P2(t) = f dP dR p2W(p, R, t) (4.24a) 

R2(t) = f dP dP dR g2 W(P, g, t) (4.24b) 

which give 

p2(t)= e ~2~r~t - - -Ros in0) t+Po  cos0) t -  20) 
0) 

+ { - 1 +  + ~ ( 1  e -; '2~r1' ~ s i n 2 0 ) t  

1 cot}) (4.25a) 

~,~, e ~1~ E~o (cos ~, ~ ~ ,  s~n ~ , )  §  ~ "o s~n ~1 ~ 

1 ( l + e  ;~2/3r~t~ +22~F1 
+ -~1 _ ( - 1  20) sin 20) t 

where 

0) = [52 _ ()2/~F1/2)2 ] 1/2 (4.26) 

sin 0)t)l  2 

From Eqs. (4.25) and (4.26) we find that the time evolution is given 
by the expected exponential relaxation, times an oscillatory term. The 
frequency of such oscillations, apart from the standard shift of the friction 
coefficient, is given by 5, that is, the frequency that involves both the 
streaming and the "dissipative" term; see Eq. (4.13). This is the dynamical 
shift to the frequency to which we referred earlier. It is a dynamical effect 
since its presence can only be detected while the system is relaxing toward 
equilibrium and does not affect the stationary state. We emphasize once 
more that this effect is due to the fact that the natural time scale of the 
system is comparable with the relaxation time of the bath. 
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In the weak coupling limit, Eqs. (4.25) become 

p2(t)  ~_ e-~'2~r~'(Po cos c o t -  Ro/Q sin cot) 2 + 1/fl(1 - e  -~2r (4.27a) 

RZ(t) ~- e-~'2~rl'(Ro cos cot + Po/Q sin cot) 2 + l/flQ2(1 - e -~2~r~') (4.27b) 

with 

co ~- Q + 2 2/2(flQF2 - fl ( O 2 )o/Q) (4.28) 

The frequency co contains a dynamic shift ~ 22fiQF2/2 and a statistical shift 
-22fl(~b2)o/2Q, neither of which can be neglected on the 22t time scale. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

The main aim of this paper has been to derive the relaxation proper- 
ties of a small system weakly coupled to a heat bath in a systematic fashion 
using classical mechanics. This is accomplished by introducing the projec- 
tion operator P [Eq. (2.17)], where 

P B - - ~ e f  B d X  (5.1) 

where/~e is the equilibrium conditional distribution function for the bath in 
the presence of fixed system coordinates and momenta. The introduction 
of an effective system Hamiltonian [Eq. (2.26)] and its Liouvillian 
[Eq. (2.15)] including the potential of mean force facilitates the derivation. 
An exact equation for the time dependence of the reduced distribution 
function of the system is obtained [Eq. (2.27)]. This equation can be 
approximated to any order in 2, the strength of the system-bath inter- 
action. To order 22, a generalized Fokker-Planck equation is obtained. 

The general results are applied to the specific problem in which the 
system is a harmonic oscillator linearly coupled to a bath. It is 
demonstrated that the system relaxes to equilibrium in an oscillating 
fashion with a frequency that is shifted from the frequency of the isolated 
oscillator by dynamic as well as statistical shifts. The dynamic shifts do not 
appear in the equilibrium distribution function, whereas the statistical shifts 
do. 
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